Aaron A. King, Ph.D.

Nelson G. Hairston Collegiate Professor of Ecology, Evolutionary Biology,
Complex Systems, and Mathematics, University of Michigan
External Professor, Santa Fe Institute
Fellow of the American Association for the Advancement of Science

Differential and enhanced response to climate forcing in diarrheal disease due to rotavirus across a megacity of the developing world

P. P. Martinez, A. A. King, M. Yunus, A. S. G. Faruque, and M. Pascual
Proceedings of the National Academy of Sciences 113(15): 4092–4097, 2016.
Rotavirus responds differently to climate forcing in two zones within a single city.

The role of climate forcing in the population dynamics of infectious diseases has typically been revealed via retrospective analyses of incidence records aggregated across space and, in particular, over whole cities. Here, we focus on the transmission dynamics of rotavirus, the main diarrheal disease in infants and young children, within the megacity of Dhaka, Bangladesh. We identify two zones, the densely urbanized core and the more rural periphery, that respond differentially to flooding. Moreover, disease seasonality differs substantially between these regions, spanning variation comparable to the variation from tropical to temperate regions. By combining process-based models with an extensive disease surveillance record, we show that the response to climate forcing is mainly seasonal in the core, where a more endemic transmission resulting from an asymptomatic reservoir facilitates the response to the monsoons. The force of infection in this monsoon peak can be an order of magnitude larger than the force of infection in the more epidemic periphery, which exhibits little or no postmonsoon outbreak in a pattern typical of nearby rural areas. A typically smaller peak during the monsoon season nevertheless shows sensitivity to interannual variability in flooding. High human density in the core is one explanation for enhanced transmission during troughs and an associated seasonal monsoon response in this diarrheal disease, which unlike cholera, has not been widely viewed as climate-sensitive. Spatial demographic, socioeconomic, and environmental heterogeneity can create reservoirs of infection and enhance the sensitivity of disease systems to climate forcing, especially in the populated cities of the developing world.

The official version of the paper is here.   Please contact Prof. King if you'd like a reprint.

© 2024 Aaron A. King
3038 Biological Sciences Building
1105 North University Avenue
Ann Arbor MI 48109-1085 USA